A number of studies have shown that pupil size increases transiently during effortful decisions. These decision-related changes in pupil size are mediated by central neuromodulatory systems, which also influence the internal state of brain regions engaged in decision making. It has been proposed that pupil-linked neuromodulatory systems are activated by the termination of decision processes, and, consequently, that these systems primarily affect the postdecisional brain state. Here, we present pupil results that run contrary to this proposal, suggesting an important intradecisional role. We measured pupil size while subjects formed protracted decisions about the presence or absence (“yes” vs. “no”) of a visual contrast signal embedded in dynamic noise. Linear systems analysis revealed that the pupil was significantly driven by a sustained input throughout the course of the decision formation. This sustained component was larger than the transient component during the final choice (indicated by button press). The overall amplitude of pupil dilation during decision formation was bigger before yes than no choices, irrespective of the physical presence of the target signal. Remarkably, the magnitude of this pupil choice effect (yes > no) reflected the individual criterion: it was strongest in conservative subjects choosing yes against their bias. We conclude that the central neuromodulatory systems controlling pupil size are continuously engaged during decision formation in a way that reveals how the upcoming choice relates to the decision maker’s attitude. Changes in brain state seem to interact with biased decision making in the face of uncertainty.

Changes in pupil size at constant luminance have long been used as a marker of central autonomic processes linked to cognition (1–4). Many studies over the past decades reported that the pupil dilates while subjects engage in demanding perceptual, cognitive, or economic decision tasks (1–3, 5–17). This decision-related pupil dilation has commonly been linked to the final choice terminating the decision process (6, 14, 16) and the consolidation of the committed decision (6, 16).

Changes in pupil size are also linked to changes in brain state. It has been proposed that the decision-related pupil dilation tracks the activity of certain neuromodulatory systems of the brainstem—in particular, the noradrenergic locus coeruleus (5, 7–9, 18) and, possibly, the cholinergic basal forebrain (19) systems. These neuromodulatory systems also activate briefly (“phasically”) during perceptual decisions, such as visual target detection (5, 20–24), likely mediated via feedback connections from the prefrontal cortex (5, 25). The modulatory neurotransmitters released from the projections of these brainstem systems, in turn, shape the internal state of cortical networks, for instance, by boosting the gain of neural interactions (5, 7, 26). Thus, these brainstem systems might also shape decision computations in cortical networks—provided that they are activated already during decision formation. If so, these systems might affect the decision process, over and above shortening the time to respond. For instance, they might govern the decision maker’s ability to overcome his or her intrinsic bias.

Here, we addressed these issues noninvasively in humans by linking decision-related pupil dilation to the time course, outcome, and bias of a protracted perceptual decision process. Many perceptual decisions are not transient events but evolve gradually over several hundreds of milliseconds, due to the slow accumulation of noisy sensory information (27–33). Further, perceptual decisions are, like economic decisions (34), prone to strong biases that are not due to external asymmetries in the magnitude or probability of payoffs for certain choices. In particular “yes” vs. “no” detection decisions depend on the idiosyncratic (liberal or conservative) attitude of the decision maker with respect to saying “yes” or “no” (35, 36).

We thus measured pupil size in subjects performing a challenging yes–no visual contrast detection task at constant luminance (Fig. 1A). A general linear model (GLM) (37) allowed us to disentangle different temporal components of the neural input to the sluggish system controlling pupil size. This approach revealed that decision-related pupil dilation was not only driven by subjects’ final choice and the concomitant motor response, but also by a (stronger) sustained component throughout the preceding decision process. Further, the dilation amplitude was bigger for yes than for no choices. This pupil choice effect was due to the conservative subjects who decided yes against their bias. Taken together, our findings point to an intricate interplay between changes in internal brain state and biased decision making in the face of uncertainty.

Significance

A number of studies reported that the pupil dilates (under constant illumination) during decision-making. Pupil dilation is also associated with the brain-wide release of modulatory neurotransmitters. It has remained unknown which specific elements of decision processes drive pupil dilation. Using a visual detection task, we here show that pupil dilation is primarily driven during, and not at the end of, a protracted decision. Further, pupil dilation differentiates between “yes” and “no” choices for conservative subjects deciding yes against their bias. Thus, pupil dilation reveals the content of the evolving decision and the decision maker’s attitude. These findings have important implications for interpreting decision-related brain activity. They also point to a possible role of neuromodulation in interacting with decision biases.

Author contributions: J.W.d.G., T.K., and T.H.D. designed research; J.W.d.G. performed research; T.K. contributed new reagents/analytic tools; J.W.d.G. analyzed data; and J.W.d.G. and T.H.D. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: t.h.donner@uva.nl.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1317557111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1317557111

PNAS Early Edition | 1 of 8
Results

Each trial of the detection task began with a baseline interval of variable duration, followed by an auditory cue that signaled the start of the subsequent decision interval (Fig. 1A and Methods). Low-contrast dynamic random noise was continuously present throughout the trial. On half of the trials, a low contrast vertical grating, the signal, was superimposed onto the noise during the decision interval (Fig. 1B). Subjects had to report a choice about the presence or absence of the signal (yes or no) by pressing one of two buttons. The signal contrast was adjusted individually such that each subject performed at about 75% correct (Fig. 1C).

Sustained Drive of Pupil Dilation Throughout a Protracted Decision Process. In all subjects, pupil diameter modulated during the decision interval (see Fig. 2A for an example subject; see Fig. S1 for all). These decision-related pupil responses were evident in all four trial categories and ranged from about 100 ms after the cue (a tone) signaling the onset of the decision interval to about 1,500 ms after the subjects’ choice (Fig. 2 and Fig. S1).

In all subjects, the amplitude of decision-related pupil responses was strongly correlated to the baseline pupil diameter.
It has been proposed that decision-related brainstem activity (and, by inference, pupil dilation) is driven by the subject’s final commitment to a choice (5, 6), or even the motor response used to report that choice (14). This scenario predicts a strong contribution of the transient at response, but not of the sustained component during decision formation. By contrast, we found that both of these components contributed significantly (see Fig. 2C for the example subject and Fig. 2D for the group). In fact, the biggest contribution was that of the sustained component, with beta weights of about 2.5 times those of the transient at the final choice. The transient elicited by the cue (i.e., decision onset) did not contribute significantly in the group average. The same pattern was evident in the whole group of 28 subjects (Fig. S3).

The conclusion that pupil dilation is driven during the decision formation (and more strongly than during the final behavioral choice) does not depend on the details of the GLM used here. We found the same qualitative pattern (in particular a statistically significant persistent component) for alternative models in which the boxcar function for the persistent input component during decision formation was substituted by a linear up ramp, akin to the neural buildup signals observed in decision-related brain regions (40–51) (or even a linear down ramp) (Fig. S4C). Further, we found that the contribution of the sustained (boxcar) component was significant across a wide range of the two free parameters of the pupil impulse response function (width and time-to-peak) (Fig. S4B) that we tested (Fig. S4C, Center). In sum, we conclude that the decision-related pupil dilation tracks the complete evolution of a perceptual decision and not merely the final choice.

Pupil Dilation Reflects the Content of the Upcoming Choice and Individual Bias. We wondered whether the decision-related pupil dilation might also contain information about the content of subjects’ upcoming choice. Previous pupil dilation measurements in visual detection tasks found bigger dilations for hits than for misses (11, 13). This result may reflect two distinct scenarios.
First, pupil dilation is bigger during yes than no choices; second, pupil dilation is bigger during accurate than inaccurate choices. The signal-absent trials are critical to distinguish between these two scenarios: a signal that reflects the choice, but not its accuracy, should also be bigger for false alarms than correct rejects (52, 53). To test whether the pupil dilation reflects choice or accuracy, we collapsed the overall decision-related pupil modulation (mainly reflecting the sustained input) into a scalar amplitude measure per trial (Methods).

Pupil responses reflected subjects’ yes vs. no choices in a categorical fashion, irrespective of whether the target was physically present and whether the choices were correct (Fig. 3). This pattern is clearly evident in the response-locked pupil time courses from the example subject in Fig. 3A. Left, who exhibited similar pupil responses during hits and false alarms, and smaller pupil responses during both misses and correct rejects. The same pattern (H > M and FA > CR) was evident (and statistically highly significant) in the overall pupil response amplitudes of the group as a whole (Fig. 3B). There was no evidence for a difference in pupil dilation during hits and false alarms ($P = 0.617$) and during misses and correct rejects ($P = 0.573$). Consequently, there was a highly significant amplitude difference between yes

![Graphs and diagrams](https://www.pnas.org/cgi/doi/10.1073/pnas.1317557111)
and no choices, but not between correct choices and errors (Fig. 3C). Again, the same pattern was also true for the group of 28 subjects, including those with negative modulation amplitudes during decision formation (Fig. S5). In what follows, we refer to the difference in pupil response between yes and no choices as the pupil choice effect.

Remarkably, a large fraction of the individual differences in the pupil choice effect was explained by subjects’ decision biases (Fig. 3 D–H), quantified in terms of criterion c of signal-detection theory (Methods). For example, a second, more liberal subject, shown in the right panel of Fig. 3A, despite strong decision-related pupil responses, hardly exhibited any difference between the four trial categories. In general, the more conservative the subject (i.e., the larger c), the bigger the pupil response amplitude during yes choices, and the smaller the pupil response amplitude during no choices (Fig. 3D). Consequently, the strength of the pupil choice effect depended on criterion (Fig. 3E).

In an alternative analysis, we split subjects into “liberal” and “conservative” subgroups based on the median criterion of the group (see colored backgrounds in Fig. 3 D–F). There was a highly significant interaction between the effects of choice (yes vs. no) and bias (conservative vs. liberal) on the pupil response (2-way repeated measures ANOVA F1, 21 = 13.70; P = 0.0013). The strong choice effect in the pupil was only evident in the conservative, but not the liberal, group (Fig. 3 G and H). The finding indicates that the overall choice effect shown in Fig. 3C reflects the conservative bias in the group of subjects as a whole. In sum, pupil dilation not only reflects the content of the upcoming choice, but also how that choice relates to the decision maker’s bias.

Given the strong (negative, for the 23 subjects) trial-by-trial correlation between baseline pupil diameter and the pupil response during the decision interval (Fig. S2), we wondered whether the choice effect in the pupil dilation during decision formation may have been inherited from the preceding baseline interval. This scenario predicts that baseline pupil diameter should be larger for no than for yes choices—opposite to the choice effect found for the pupil response during the decision interval. In contrast to this prediction, we found that baseline pupil diameter also tended to be bigger before yes than no choices (Fig. S6 A and B). Further, the choice effects in the pupil responses during the decision interval and in the baseline pupil diameter were not significantly correlated (Fig. S6 C and D). Finally, the choice effect in the baseline pupil diameter was not correlated to criterion. Thus, the choice effects in baseline pupil diameter and pupil dilation during decision formation reflect separate processes.

Other Factors than Individual Bias Do Not Account for Pupil Choice Effect. The pupil choice effect was also not explained by differences in reaction times. Because the sluggish pupil impulse response (Fig. 2B) leads to accumulation of a sustained input, the pupil response is bound to increase with the duration of sustained inputs (up to about 1 s for the impulse response function estimated in ref. 37. As shown above, in our experiment, the pupil response was driven throughout the decision interval (Fig. 2). Thus, amplitude estimates will be larger when decision intervals are longer. Because subjects’ reaction times were longer for no than for yes choices (Fig. 1E), the sluggishness of the pupil should have led to bigger pupil response amplitudes for no choices, opposite to the observed pupil choice effect. In sum, reaction times cannot account for the pupil choice effect, but instead may have led to an underestimation of the true effect size. Further, the dependence of the pupil choice effect on criterion remained significant after controlling for reaction time (Fig. 3F).

As for the pupil choice effect, reaction time also depended on the interaction of choice and bias (two-way repeated measures ANOVA F1, 21 = 8.55; P = 0.0081) (Fig. S7). Because this inter-

action may have contributed to the criterion dependence of the pupil choice effect, we repeated the correlation between pupil choice effect and criterion after removing (by means of linear regression) the variance in the pupil choice effect explained by reaction time. The resulting partial correlation was also significant (Fig. 3F).

The pupil choice effect and its dependence on criterion were also not due to differences in eye movements (Fig. S8). Trials with saccades > 3 degrees of visual angle were excluded from the present analyses (Methods). However, we still detected smaller, residual gaze shifts (including microsaccades) in a substantial fraction (72%) of the trials. The amplitudes of the pupil responses during the decision interval exhibited a weak, and statistically significant, negative correlation to the number of these residual eye movements during the decision interval (r = 0.08; P < 0.0001). However, the number of eye movements did not exhibit any choice effect (i.e., no significant difference between H and M and between FA and CR) (Fig. S8A), in contrast to the pupil response (Fig. 3B). Further, when repeating the correlation between pupil choice effect and criterion, after removing (by means of linear regression) the variance in the pupil choice effect accounted for by the number of eye movements, the resulting partial correlation remained highly significant (Fig. S8B).

Finally, the decision-related pupil dilation amplitude and the pupil choice effect also did not reflect the individual threshold contrast level (the inverse of subjects’ perceptual sensitivity for the faint signals) (Fig. S9). Taken together, these control analyses underline the specificity of the pupil choice effect and its dependence on individual bias shown in Fig. 3.

Discussion It has long been known that the pupil dilates during challenging mental tasks (1–3). More recent studies have linked pupil dilation to surprise about behaviorally relevant events (10, 12, 54), perceptual target detection (11, 13), and report of transitions between percepts in bistable perceptual phenomena (6, 14). Taken together, these findings establish that pupil dilation is a faithful reporter of the mental state of decision makers. Decision-related pupil dilation has commonly been linked to the final choice terminating the decision process (6, 14, 16). Consequently, the functional role of the underlying central brain processes has been attributed to consolidating decisions that have been made before (6, 16), rather than to shaping ongoing decisions as they evolve. One previous study of financial choice showed sustained pupil dilation throughout decision formation (17), but these authors did not dissociate the different components driving decision-related pupil dilation. Most importantly, decision-related pupil dilation has, so far, neither been linked to the specific contents of choices, nor to the bias of the decision maker.

By applying linear systems analysis techniques to pupil-dilation measurements during a protracted perceptual decision, we showed that pupil dilation (i) exhibits the strongest sustained component throughout decision formation, not at the end; (ii) predicts the content of the upcoming choice (yes > no); and (iii) reflects the decision maker’s bias (boosted when conservative decision makers are about to respond yes against their bias). These results were highly specific and were neither explained by reaction times, fixational eye movements, nor individual perceptual sensitivity. Our results establish that pupil dilation faithfully tracks the formation of protracted perceptual decisions in a way that reflects both the evolving yes vs. no decision, and the decision maker’s attitude toward that decision. It may prove fruitful to link pupil dilation to other elements of the decision process in future studies, such as the decision maker’s level of confidence in his or her choice.

Our findings have some notable implications for interpreting neural correlates of perceptual decision making in visual cortex. First, the observed changes in pupil diameter imply that the
amount of light entering the eye during perceptual decisions fluctuates from trial to trial, depending on the content of the upcoming choice and the decision maker’s bias. It will be important to determine how these changes in retinal illumination affect neural activity in visual cortex as measured with electrophysiology or functional magnetic resonance imaging. Second, given that several brainstem systems have widespread projections to visual cortex, our findings may (at least in part) account for the fact that widespread modulations of population activity in visual cortex also reflect subjects’ “present” vs. “absent” choices in different perceptual tasks (53, 55–57). These activity modulations have commonly been interpreted in terms of decision-related feedback from downstream cortical regions. Our present results indicate that pupil-linked release of neuromodulators is a plausible alternative candidate source of these decision-related signals in visual cortex (58, 59).

The level of people’s arousal fluctuates continuously on different time scales (5). These fluctuations reflect changes in global brain state (60, 61), governed by the release of neuromodulators from autonomic brainstem centers (5, 62). Traditionally, neuromodulators (and arousal) have been viewed as slow and nonspecific regulators of the overall behavioral state (61). Intermediate levels of arousal are commonly associated with the most accurate performance in sensory-motor choice tasks (5). However, it has become clear that neuromodulatory brainstem systems can be closely synchronized to rapid cognitive acts, such as decisions (5, 62, 63). Non–luminance-mediated pupil dilation seems to track the activity of these neuromodulatory brainstem centers, specifically the noradrenergic locus coeruleus (5). Under this assumption, our results suggest that pupil-linked brainstem systems receive diverse information from brain regions, including the cortical areas exhibiting sustained and/or ramping activity during decision formation (40–51), as well as (yet to be discovered) brain regions that encode the subjects’ criterion.

Our current results also entail some notable differences to the results from direct measurements of locus coeruleus activity in animals. First, although the relationship between evolving decisions and the subject’s bias was a major driving force behind the decision-related pupil dilation in our study, neural signatures of such a relationship have not yet been identified in the locus coeruleus. Second, the rapid nature of decision-related locus coeruleus activity observed in animals gave rise to the idea that this activity is primarily postdecisional (5). It is unclear whether these differences are due to differences between tasks, individuals, or species used, or whether they reflect genuine differences between pupil dilation and locus coeruleus activity. For example, the tasks used in previous animal physiology studies of locus coeruleus activity involved much faster decision processes (5) than the task used here. Future studies should determine whether the decision-related locus coeruleus activity also shows sustained activity corresponding to the pupil input during protracted decisions.

One model of locus coeruleus activity during decision making postulates an intradecisional drive of the locus coeruleus by surprise about decision-relevant events (64). It is conceivable that the bias-dependent choice component we found here is driven (at least in part) by surprise (10, 12) about the evolving yes decisions. The latter are, by definition, less frequent (thus, more surprising) for conservative than for liberal individuals. Importantly, regardless of the process driving the choice effect in the pupil, the fact that this effect occurs during decision formation suggests that the associated neuromodulator release may shape a decision process while it unfolds.

Our observations are consistent with the idea that pupil-linked neuromodulator release interacts with biased decision processing. Neuromodulators such as noradrenaline seem to boost the gain of neural interactions in the cortex (5, 7, 26). It is tempting to speculate that such a transient boost in gain during decision formation enables conservative subjects to overcome their bias against responding “yes.” Models of perceptual decision making help conceptualize this idea (29). In one specific scheme for yes vs. no choices, supported by neurophysiological data (43, 50, 65), two neural populations accumulate evidence for yes and no toward separate bounds, and compete via mutual inhibition (30, 43, 66). The yes population accumulates the sensory evidence for signal presence—i.e., neural activity in visual cortex (spontaneous activity in the case of false alarms) (53). The no population accumulates a “default input” (66). If there is an intrinsic asymmetry between these two populations, e.g., the yes population is larger or has stronger input gain), a global boost in neural gain will increase the rate of accumulation toward the yes choice. A conservative bias can be due to a shift in the starting point of the accumulation process (44)—in this case, away from the yes bound. Consequently, conservative subjects might require a stronger (pupil-linked) boost in gain for inputs from visual cortex to push the yes population toward the bound. Simultaneously monitoring brain activity and pupil dynamics during decision processing will allow for testing these ideas in future studies.

In conclusion, our findings indicate that the internal state of the brain changes each time one makes a decision, to an extent that reflects the content of the upcoming choice in relation to the decision maker’s bias. Such decision-related changes in brain state may actively shape decisions as they unfold, perhaps by helping to override intrinsic biases. Tracking pupil size will be instrumental for unraveling how internal brain states interact with the brain mechanisms underlying perceptual decision making.

Methods

Subjects. The ethics committee of the Psychology Department of the University of Amsterdam approved the study. A total of 29 healthy subjects (14 females; age range, 18–38 y), including the authors, participated in the study. Twenty-six subjects were naive to the purpose of the study and participated after informed consent. These subjects were either paid for their participation or received research credit. All subjects had normal or corrected-to-normal vision. One subject was excluded from pupil analyses for breaking fixation on more than 30% of the trials, leaving 28 subjects in total.

Stimuli. Stimuli were presented on a 22-in LaCie Electron 22 blue IV gamma corrected screen with a spatial resolution of 768 × 1,024 pixels, run at a vertical refresh rate of 100 Hz. To minimize any effect of light on pupil diameter, the overall luminance of the display was held constant throughout the experiment. At all times, there was a dynamic noise pattern presented within this annulus, and the luminance across all pixels in this pattern varied from the mean luminance of the noise to near-zero values in randomly selected locations. This pedestal binary noise pattern of 5% contrast was refreshed on every frame. On “signal-plus-noise” trials, a sinusoidal grating with a vertical orientation (two cycles per degree) was superimposed on the noise for the period of the decision interval (Fig. 1). All stimuli were presented in a Gaussian annulus, with an average distance (± 5D) to fixation of 4.8 ± 1.8 degrees (Fig. 1B). Throughout each run, the contrast of the grating (i.e., the signal strength) was fixed at each subject’s 75% correct detection threshold level, as determined individually before the main experiment using the method of constant stimuli and discarding the effect of individual decision criteria (35, 36). Signal presence was randomly selected on each trial, under the constraint that it would occur on 50% of the trials within each block of 80 trials.

Task and Procedure. Subjects were instructed to form a decision about the presence or absence of the signal and report their choice by pressing one of two response buttons with the middle or index finger of their right hand, once they felt sufficiently certain (free response paradigm). The mapping between button press and choice (e.g., right key, yes; and left key, no) was counterbalanced across subjects. Each trial began with the central fixation dot turning red and consisted of the following consecutive intervals (Fig. 1A): (i) pretrial baseline interval (containing only noise); (ii) the decision interval [its onset was cued by a tone (beep of 500 ms duration), and it was terminated by the subject’s response, or after a deadline (3 s in the first six subjects, 2.5 s in the remaining ones)]; and (iii) a fixed delay interval (containing only noise). Six of the 29 subjects were also prompted to rate their confidence and received auditory feedback after each choice. The present report focuses on pupil modulations during the decision interval, which were
where \(w \) is the width and \(t_{\text{max}} \), the time-to-peak (ms) of the impulse response function. See Eq. 18 and Fig. 5B. For the main analyses presented in Fig. 2 and Fig. S4A, we used the canonical values of these two parameters proposed by ref. 37, which were previously used to deconvolve pupil responses in the attentional blink (15): \(w = 10.1, t_{\text{max}} = 930 \) ms. To verify that our conclusions did not depend on the choice of these specific parameters, we reran the GLM (“box”-model) for a wide range of combinations of \(w \) and \(t_{\text{max}} \) (Fig. S4C). The measured pupil time series and convolved regressors were baseline-corrected by subtracting, from each value in each time series, the average value from all pretrial baseline intervals (−0.5 to 0 s from onset of decision interval). The convolved and baseline-corrected regressors were horizontally concatenated into the complete design matrix. Multiple regression yielded the best-fitting beta weights for each regressor type (i.e., temporal component of the pupil response), separately for each subject.

Event-related analysis of pupil response amplitudes. The interpolated pupil time series were low-pass filtered (third order Butterworth; cutoff, 4 Hz) and z-scored for each run, based on the average and SD of pupil diameter across the time window of the event-related pupil responses (0.5 s before to 1.5 s after the decision interval). We computed the baseline pupil diameter for each trial as the mean of all pretrial values in the window −0.5 to 0 s from onset of decision interval and subtracted this baseline value from the pupil time course on the same trial. We used linear projection of each single trial baseline-corrected pupil time course onto the average pupil time course of that subject, to obtain a scalar measure of the overall pupil modulation amplitude (positive or negative) for each trial:

\[
A_i = \frac{R_i \cdot \bar{R}}{|R_i|},
\]

where \(R_i \) is the single trial pupil time course, \(i \) indexes trials, and \(\bar{R} \) is the average pupil time course of a given subject. Pupil response amplitude measures were computed for the time window −1 s to 1.5 s from response, which consistently captured the peak of all subjects’ pupil responses (Figs. 2 and 3 and Fig. S1) and encompassed, due to the delay, the sustained component and the transient at choice.

Statistical comparisons. We used nonparametric permutation tests to test for significant differences between the beta weights of the GLM regressors as well as their difference to 0 (Fig. 2 and Figs. S3 and S4), and between the pupil measurements (Fig. 3 and Figs. S5 and S6), reaction times (Fig. 1 and Fig. S7), or eye movements (Fig. S8) from different trial categories. All these statistical comparisons were performed across subjects, using the mean per subject as observation. For each comparison, we randomly permuted the labels of the observations (e.g., the regressor label of the beta estimates; or the trial category label of pupil response amplitudes) and recalculated the difference between the two groups means (10,000 permutations). The \(P \) value associated with the original difference between the means was given by the fraction of shuffles in which the original difference was exceeded by the difference between the means obtained for the shuffled data. When analyzing the correlation between the choice effect in pupil dilation and criterion, we also used a permutation procedure to test for differences between the correlation coefficients for yes and no choices (Fig. 3D). In this case, we permuted the condition labels (yes/no) of pairs of pupil dilation and criterion.

ACKNOWLEDGMENTS. We thank Sander Nieuwenhuis, Florian Ostendorf, and Anne Urui for comments. This research was supported by Netherlands Organisation for Scientific Research-Veni Grant 451-09-016 (to T.K.).
Supporting Information

de Gee et al. 10.1073/pnas.1317557111

Fig. S1. Modulations of pupil diameter during the decision interval. Mean time courses of pupil diameter from all subjects, sorted by trial types and aligned to choice. Shaded regions, SEM. Rectangles highlight subjects with negative overall pupil responses during decision interval (see also Fig. S2), computed by averaging pupil responses across all four trial types and summing up the samples of the resulting average response in the time window (−1 to 1.5 s from response). The five highlighted subjects had a negative sum.
Fig. S2. Correlation between pupil response and baseline pupil diameter. Single-trial pupil response amplitude per subject plotted against single-trial baseline pupil diameter. Dashed rectangles indicate subjects with an inverse effect (pupil constriction) during the decision interval (see also Fig. S1). These subjects show a positive correlation to baseline diameter whereas all other subjects (who have a pupil dilation response) show a negative correlation.
Fig. S3. Pupil dilation tracks the time course of a protracted decision \((n = 28)\). Average of best-fitting beta weights for the four temporal components across all subjects. Error bars, SEM. ***\(P < 0.001\). Because five subjects showed an inverse effect (pupil constriction) during the decision interval (see Figs. S1 and S2), we here quantified only the overall modulation, regardless of sign. To take this observation into account, we focused this control analysis on the comparison between the temporal components (rather than also comparing each component against 0). To this end, we took the absolute value of the single-subject beta weights for each component, before comparing them between components. Note that the comparison against 0 becomes meaningless in this situation.

Fig. S4. Sustained input during decision does not depend on specifics of GLM. (A) Alternative models of the persistent input component. Format as in Fig. 1. Model 2 consists of a linear up ramp instead of boxcar; model 3 consists of a linear down ramp instead of boxcar. The transient regressors are identical for all models. Both models (fitted separately) yield a robust and statistically significant component during decision formation that is larger than the transient at the time of behavioral choice. (B) Shapes of the pupil IRFs with different parameter combinations used for \(C\), with the standard parameters (used for Fig. 2 and A) plotted in black. The width and time-to-peak parameters are varied across the following range: \(w\), 4, 6, 8, 10.1 (canonical), 12, 14, 16; \(t_{\text{max}}\), 500, 650, 800, 930 (canonical), 1,100, 1,250, 1,400. (C) Matrix of average beta values for choice and box components, as well as their difference, based on the IRF parameter combinations shown in B. Color-coded cells correspond to significant beta values \((P < 0.05\) permutation test).
Fig. S5. Pupil dilation reflects the upcoming choice and intrinsic bias (n = 28). (A) Pupil response amplitudes, sorted by trial type and averaged across all subjects. (B) Pupil response amplitudes, sorted by choice or by correctness and averaged across the group. (C) As in A, but separately for liberal and conservative subjects (median split). Error bars, SEM. **p < 0.01; ***p < 0.001. Note that our linear projection procedure (used to compute single-trial pupil response amplitudes; see Methods) quantifies the overall modulation amplitude, with respect to each subject’s mean response, irrespective of the polarity of the response. In other words, even for those subjects with pupil constriction during the decision interval (i.e., negative polarity), the linear projection yields positive amplitude estimates for all negative single-trial responses (the bigger, the more negative the response). The linear projection yields negative amplitude estimates only for single-trial responses that have opposite sign to the mean response.

Fig. S6. Choice effects in baseline pupil diameter is decoupled from choice effect in pupil response during decision interval. (A) Baseline pupil diameter, sorted by trial type (Left), and sorted by choice or by correctness (Right), and averaged across the group (n = 23). (B) Baseline pupil diameter, sorted by trial type (Left), and sorted by choice or by correctness (Right), and averaged across the group (n = 28). (C) Mean choice effect (yes-no difference) in baseline pupil diameter per subject plotted against mean choice effect in pupil response (n = 23). (D) Mean choice effect (yes-no difference) in baseline pupil diameter per subject plotted against mean choice effect in pupil response (n = 28). Error bars, SEM. *p < 0.05; **p < 0.01; ***p < 0.001. Baseline pupil diameter was quantified as follows. The interpolated pupil time series were low pass-filtered (cutoff, 4 Hz) and z-scored for each run, based on the average and SD of pupil diameter across the time window of the baseline pupil diameter (−0.5 to 0 s from onset of decision interval). We computed the baseline pupil diameter for each trial as the mean of all pretrial values in the window −0.5 to 0 s from onset of decision interval. This procedure forced average baseline pupil diameter (across all trials) per subject to be 0.
Fig. S7. Reaction times as a function of choice and decision bias. (A) Normalized reaction times, sorted by trial type (Left) or by choice content and accuracy (Right), averaged across all subjects with positive pupil response (n = 23). (B) Same as in A, but for the whole group (n = 28). (C) As in A, but separately for liberal and conservative subjects (median split). (D) As in C, but for the whole group (n = 28). Error bars, SEM. *P < 0.05; ***P < 0.001.

Fig. S8. Eye movements are unrelated to pupil choice effect. (A) The number of residual eye movements after excluding trials with large fixation errors (see Methods) during the decision interval did not differ significantly between yes and no choices. Error bars, SEM. (B) Correlation between pupil choice effect and criterion after removing (by means of linear regression) the variance in the pupil choice effect explained by the number of eye movements. The resulting partial correlation is highly significant. Error bars, 60% confidence intervals (bootstrap).
Fig. S9. Pupil choice effect is not correlated to threshold contrast value. (A) Average pupil response amplitude per subject against subjects’ individual threshold contrast. (Left) Yes choices. (Right) No choices. Difference in correlation is assessed by means of permutation test. (B) As in A, but for difference of average pupil response amplitudes for yes and no choices (pupil choice effect) per subject. Error bars, 60% confidence intervals (bootstrap).