Perceptual choice boosts network stability: effect of neuromodulation?

Christopher M. Warren¹, Sander Nieuwenhuis¹, and Tobias H. Donner²

¹Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
²Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands

A recent paper demonstrates that conscious perceptual decisions are characterized by a hallmark of attractor states in recurrent cortical networks: increased stability of cortex-wide activity patterns. We propose that this global cortical state change may be caused by a transient gain modulation through ascending brainstem systems.

Most of us have had the experience of waiting for a friend or family member to pick us up at the airport. A car appears in the distance: Is that them? It’s blue, and their car is blue. Is it an SUV or a minivan? They drive a minivan. As the car gets closer and time passes, the evidence accumulates until you are sure it’s them, and you wave. During a perceptual decision like this, your brain moves from a labile, input-sensitive state to a stable, input-insensitive state, often referred to as an attractor state [1]. This attractor state reflects the brain’s commitment to one categorical interpretation of the incoming sensory data (it’s them)—often followed by the commitment to a behavioral response (wave). In simulations of the underlying cortical network dynamics, this attractor state is characterized by increased stability (i.e., decreased variability) of neural activity [1]. A recent article in Proceedings of the National Academy of Sciences of the United States of America by Schurger and colleagues provides the first direct evidence for this hypothesis [2].

Schurger and colleagues asked their human participants to view simple line drawings of faces and houses. The visibility of these stimuli was systematically varied over a range of five levels around the psychophysical detection threshold. The participants’ task was to indicate the category of each stimulus, guessing if necessary, and then to report whether the stimulus had been ‘seen’ or ‘unseen’. This protocol allowed the researchers to compare trials that differed in subjective visibility (‘seen’ versus ‘unseen’), but were matched in terms of objective stimulus strength (sensory evidence). Neural activity was recorded with simultaneous magnetoencephalography (MEG) and electroencephalography (EEG). As a proxy of cortical network stability, the authors quantified the dissimilarity between successive spatial patterns of MEG activity across sensors over the course of a trial (Figure 1A). For brevity, we henceforth refer to this metric as ‘pattern variance.’

The MEG data revealed a period from approximately 500 to 800 milliseconds after stimulus onset during which the spatial pattern of activity was more stable on ‘seen’ trials than on ‘unseen’ trials. Importantly, the decrease in MEG pattern variance during ‘seen trials’ was accompanied by a decrease in overall signal strength, ruling out the concern that the suppression of pattern variance (i.e., increased stability) may reflect an increased signal-to-noise ratio under high visibility (predicting higher signal strength). These findings suggest that the brain’s stable commitment to one interpretation of the sensory data is characteristic of conscious perception. In a re-analysis of EEG data from a large pool of patients with disorders of consciousness (of varying degree) and healthy controls, the authors showed that within-trial neural stability does not only reflect the contents of consciousness in fully conscious subjects, but it also reflects people’s overall levels of consciousness. Schurger and colleagues were careful to exclude a number of alternative explanations for their findings. For example, they showed that the suppression of MEG pattern variance for ‘seen trials’ did not just reflect a suppression of oscillatory brain activity in the alpha band, which had been reported in earlier studies and was also found in the present one. Repeating the stability analysis after removing alpha-band activity from the MEG data did not eliminate the reported pattern variance effects.

Intriguingly, Schurger and colleagues also identified an EEG signal, the peak of which closely preceded the suppression in MEG pattern variance, that may reflect an underlying process that drives the emergence of stability: a centro-parietal late positive potential that is often referred to as the P300. In line with previous research, the P300 had significantly higher amplitude on ‘seen’ trials than on ‘unseen’ trials. As the authors point out, these findings match with the proposal that the P300 reflects the sudden transition of the cortical network into the global attractor state that culminates in conscious perception [3]. This state transition is often referred to as ‘ignition.’ The new cortical network state is characterized by the activation of neurons in association cortex engaging in recurrent interactions with sensory cortex (Figure 1B).

Here, we propose an alternative mechanistic scenario for the reported results: a transient boost in the gain of cortical interactions due to decision-related neuromodulator release (Figure 1C). The variability in cortical neural activity, both across trials [4] and within trials [5], is

---

Keywords: neuromodulators; variance suppression; P300; norepinephrine; decision making; consciousness.

1364-6613/ © 2015 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tics.2015.05.007
regulated by neuromodulators. Brainstem neuromodulatory systems, such as the norepinephrine system, are activated transiently during perceptual decisions [6]. Global transient signals consistent with decision-related neuromodulation have been observed in visual cortex during the report of changes in perception [7] and predict the stability of subsequent perceptual states [8]. One possibility is that the cortical neuromodulatory effects described above are mediated by changes in neural gain (input-to-output multiplier). Intriguingly, previous work has suggested that the P300 reflects a transient increase in neural gain due to the phasic release of norepinephrine [9]. This mechanistic interpretation of the P300 awaits definitive evidence, yet it fits nicely with the findings of Schurger and colleagues. In sum, the increased cortical network stability associated with a conscious perceptual decision observed by Schurger and colleagues may result from a transient modulatory boost in neural gain (Figure 1C).

The innovative study by Schurger and colleagues contributes to mounting evidence suggesting that the study of neural variability will be instrumental in unraveling the mechanisms of cognition (e.g., [10]). The results of the present study are exciting and point to a number of interesting avenues for future work. For example, future empirical and simulation studies should shed light on the mechanistic relationship between the change in neural stability and the P300 component (or other event-related potential components), which are overlapping in time. Another intriguing question is what exactly is becoming more stable during the formation of a decision: is it the cortical representation of the perceived stimulus only, or the entire cortical network? Future studies could restrict the stability analysis to those sensors that carry (or do not carry) information about the experimental stimuli.

References